15,934 research outputs found

    Manganese-56 coincidence-counting facility precisely measures neutron-source strength

    Get PDF
    Precise measurement of neutron-source strength is provided by a manganese 56 coincidence-counting facility using the manganese-bath technique. This facility combines nuclear instrumentation with coincidence-counting techniques to handle a wide variety of radioisotope-counting requirements

    Adapt Or Die: Polynomial Lower Bounds For Non-Adaptive Dynamic Data Structures

    Get PDF
    In this paper, we study the role non-adaptivity plays in maintaining dynamic data structures. Roughly speaking, a data structure is non-adaptive if the memory locations it reads and/or writes when processing a query or update depend only on the query or update and not on the contents of previously read cells. We study such non-adaptive data structures in the cell probe model. The cell probe model is one of the least restrictive lower bound models and in particular, cell probe lower bounds apply to data structures developed in the popular word-RAM model. Unfortunately, this generality comes at a high cost: the highest lower bound proved for any data structure problem is only polylogarithmic (if allowed adaptivity). Our main result is to demonstrate that one can in fact obtain polynomial cell probe lower bounds for non-adaptive data structures. To shed more light on the seemingly inherent polylogarithmic lower bound barrier, we study several different notions of non-adaptivity and identify key properties that must be dealt with if we are to prove polynomial lower bounds without restrictions on the data structures. Finally, our results also unveil an interesting connection between data structures and depth-2 circuits. This allows us to translate conjectured hard data structure problems into good candidates for high circuit lower bounds; in particular, in the area of linear circuits for linear operators. Building on lower bound proofs for data structures in slightly more restrictive models, we also present a number of properties of linear operators which we believe are worth investigating in the realm of circuit lower bounds

    Public R&D Innovation: The Case of Wind Energy in Denmark, Germany and the United Kingdom

    Get PDF
    This paper examines the impact of public research and development (R&D) support on cost reducing innovation for wind turbine farms in Denmark, Germany and the United Kingdom (UK). First we survey the literature in this field. The literature indicates that in Denmark R&D policy has been more successful than in Germany or the UK in promoting innovation of wind turbines. Furthermore, such studies point out that (subsidy-induced) capacity expansions were more effective in the UK and Denmark in promoting cost-reducing innovation than in Germany. The second part of the paper describes the quantitative analysis of the impact of R&D and the capacity expansion on innovation. This is calculated using the two-factor learning curve (2FLC) model, in which investment cost reductions are explained by cumulative capacity and the R&D based knowledge stock. Time-series data were collected for the three countries and organized as a panel data set. The parameters of the 2FLC model were estimated, focusing on the heterogeneity of the parameters across countries. We arrive at robust estimations of a learning-by-doing rate of 5.4% and a learning-by-searching rate of 12.6%. The analysis underlies the homogeneity of the learning parameters, enhancing the validity of the 2FLC formulation

    A Few Considerations on Structural and Logical Composition in Specification Theories

    Full text link
    Over the last 20 years a large number of automata-based specification theories have been proposed for modeling of discrete,real-time and probabilistic systems. We have observed a lot of shared algebraic structure between these formalisms. In this short abstract, we collect results of our work in progress on describing and systematizing the algebraic assumptions in specification theories.Comment: In Proceedings FIT 2010, arXiv:1101.426

    Time lower bounds for nonadaptive turnstile streaming algorithms

    Full text link
    We say a turnstile streaming algorithm is "non-adaptive" if, during updates, the memory cells written and read depend only on the index being updated and random coins tossed at the beginning of the stream (and not on the memory contents of the algorithm). Memory cells read during queries may be decided upon adaptively. All known turnstile streaming algorithms in the literature are non-adaptive. We prove the first non-trivial update time lower bounds for both randomized and deterministic turnstile streaming algorithms, which hold when the algorithms are non-adaptive. While there has been abundant success in proving space lower bounds, there have been no non-trivial update time lower bounds in the turnstile model. Our lower bounds hold against classically studied problems such as heavy hitters, point query, entropy estimation, and moment estimation. In some cases of deterministic algorithms, our lower bounds nearly match known upper bounds

    Birth of Closed Strings and Death of Open Strings during Tachyon Condensation

    Full text link
    The tremendous progress achieved through the study of black holes and branes suggests that their time dependent generalizations called Spacelike branes (S-branes) may prove similarly useful. An example of an established approach to S-branes is to include a string boundary interaction and we first summarize evidence for the death of open string degrees of freedom for the homogeneous rolling tachyon on a decaying brane. Then, we review how to extract the flat S-brane worldvolumes describing the homogeneous rolling tachyon and how large deformations correspond to creation of lower dimensional strings and branes. These S-brane worldvolumes are governed by S-brane actions which are on equal footing to D-brane actions, since they are derived by imposing conformality on the string worldsheet, as well as by analyzing fluctuations of time dependent tachyon configurations. As further examples we generalize previous solutions of the S-brane actions so as to describe multiple decaying and nucleating closed fundamental strings. Conceptually S-brane actions are therefore different from D-brane actions and can provide a description of time dependent strings/branes and possibly their interactions.Comment: 15 pages, 7 eps figures; invited review for Modern Physics Letters A, including new solutions for S-brane actions. v2 published version, minor typos correcte

    Stable and Unstable Circular Strings in Inflationary Universes

    Full text link
    It was shown by Garriga and Vilenkin that the circular shape of nucleated cosmic strings, of zero loop-energy in de Sitter space, is stable in the sense that the ratio of the mean fluctuation amplitude to the loop radius is constant. This result can be generalized to all expanding strings (of non-zero loop-energy) in de Sitter space. In other curved spacetimes the situation, however, may be different. In this paper we develop a general formalism treating fluctuations around circular strings embedded in arbitrary spatially flat FRW spacetimes. As examples we consider Minkowski space, de Sitter space and power law expanding universes. In the special case of power law inflation we find that in certain cases the fluctuations grow much slower that the radius of the underlying unperturbed circular string. The inflation of the universe thus tends to wash out the fluctuations and to stabilize these strings.Comment: 15 pages Latex, NORDITA 94/14-

    Black Holes in Supergravity: the non-BPS Branch

    Get PDF
    We construct extremal, spherically symmetric black hole solutions to 4D supergravity with charge assignments that preclude BPS-saturation. In particular, we determine the ground state energy as a function of charges and moduli. We find that the mass of the non-BPS black hole remains that of a marginal bound state of four basic constituents throughout the entire moduli space and that there is always a non-zero gap above the BPS bound.Comment: 29 pages, one appendix, no figures; v2. few comments and references added and a missing sign included; v3. further references adde

    Heterotic Flux Attractors

    Full text link
    We find attractor equations describing moduli stabilization for heterotic compactifications with generic SU(3)-structure. Complex structure and K\"ahler moduli are treated on equal footing by using SU(3)xSU(3)-structure at intermediate steps. All independent vacuum data, including VEVs of the stabilized moduli, is encoded in a pair of generating functions that depend on fluxes alone. We work out an explicit example that illustrates our methods.Comment: 37 pages, references and clarifications adde

    Competing superconducting and magnetic order parameters and field-induced magnetism in electron doped Ba(Fe1−x_{1-x}Cox_{x})2_{2}As2_{2}

    Get PDF
    We have studied the magnetic and superconducting properties of Ba(Fe0.95_{0.95}Co0.05_{0.05})2_{2}As2_{2} as a function of temperature and external magnetic field using neutron scattering and muon spin rotation. Below the superconducting transition temperature the magnetic and superconducting order parameters coexist and compete. A magnetic field can significantly enhance the magnetic scattering in the superconducting state, roughly doubling the Bragg intensity at 13.5 T. We perform a microscopic modelling of the data by use of a five-band Hamiltonian relevant to iron pnictides. In the superconducting state, vortices can slow down and freeze spin fluctuations locally. When such regions couple they result in a long-range ordered antiferromagnetic phase producing the enhanced magnetic elastic scattering in agreement with experiments.Comment: 9 pages, 6 figure
    • …
    corecore